The asymptotic distance between an ultraflat unimodular polynomial and its conjugate reciprocal
نویسندگان
چکیده
Let K n class="MJX-TeXAtom-REL"> ? { Q : ( z stretchy="false">) = ? k 0 a , ? ?<!-- ? </mml:msubsup> | ?<!-- ? <mml:mi>q d ?<!-- ? mathvariant="normal">?<!-- ? <mml:mo>( ) \frac {1}{2\pi } \int _0^{2\pi }{\left | (P_n - P_n^*)(e^{it}) |^q \, dt} \sim {{2}^q \Gamma (\frac {q+1}{2} )}{\Gamma q2 ) \sqrt {\pi }} \,\, n^{q/2} for every and alttext="q infinity mathvariant="normal">?<!-- ? encoding="application/x-tex">q (0,\infty ) , where asterisk"> encoding="application/x-tex">P_n^* the conjugate reciprocal polynomial associated with encoding="application/x-tex">P_n alttext="normal Gamma"> encoding="application/x-tex">\Gamma usual gamma function, alttext="tilde"> encoding="application/x-tex">\sim symbol means ratio left right hand sides converges as alttext="n right-arrow infinity"> stretchy="false">?<!-- ? encoding="application/x-tex">n \rightarrow \infty Another highlight states prime squared cubed 3 EndFraction"> class="MJX-variant" mathvariant="normal">?<!-- ? <mml:mn>3 }\int (P_n^\prime P_n^{*\prime })(e^{it}) |^2 {2n^3}{3} We few other new results reprove some interesting old well.
منابع مشابه
How Far Is an Ultraflat Sequence of Unimodular Polynomials from Being Conjugate-reciprocal?
In this paper we study ultraflat sequences (Pn) of unimodular polynomials Pn ∈ Kn in general, not necessarily those produced by Kahane in his paper [Ka]. We examine how far is a sequence (Pn) of unimodular polynomials Pn ∈ Kn from being conjugate reciprocal. Our main results include the following. Theorem. Given a sequence (εn) of positive numbers tending to 0, assume that (Pn) is a (εn)-ultraf...
متن کاملFlatness of Conjugate Reciprocal Unimodular Polynomials
A polynomial is called unimodular if each of its coefficients is a complex number of modulus 1. A polynomial P of the form P (z) = ∑n j=0 ajz j is called conjugate reciprocal if an−j = aj , aj ∈ C for each j = 0, 1, . . . , n. Let ∂D be the unit circle of the complex plane. We prove that there is an absolute constant ε > 0 such that max z∈∂D |f(z)| ≥ (1 + ε) √ 4/3m , for every conjugate recipro...
متن کاملOn the Real Part of Ultraflat Sequences of Unimodular Polynomials
Let Pn(z) = ∑n k=0 ak,nz k ∈ C[z] be a sequence of unimodular polynomials (|ak,n| = 1 for all k, n) which is ultraflat in the sense of Kahane, i.e., lim n→∞ max |z|=1 ∣
متن کاملan investigation about the relationship between insurance lines and economic growth; the case study of iran
مطالعات قبلی بازار بیمه را به صورت کلی در نظر می گرفتند اما در این مطالعه صنعت بیمه به عنوان متغیر مستفل به بیمه های زندگی و غیر زندگی شکسته شده و هم چنین بیمه های زندگی به رشته های مختلف بیمه ای که در بازار بیمه ایران سهم قابل توجهی دارند تقسیم میشود. با استفاده از روشهای اقتصاد سنجی داده های برای دوره های 48-89 از مراکز ملی داده جمع آوری شد سپس با تخمین مدل خود بازگشتی برداری همراه با تعدادی ...
15 صفحه اولThe Phase Problem of Ultraflat Unimodular Polynomials: the Resolution of the Conjecture of Saffari
Let D be the open unit disk of the complex plane. Its boundary, the unit circle of the complex plane, is denoted by ∂D. Let Kn := ( pn : pn(z) = n X k=0 akz , ak ∈ C , |ak| = 1 ) . The class Kn is often called the collection of all (complex) unimodular polynomials of degree n. Given a sequence (εn) of positive numbers tending to 0, we say that a sequence (Pn) of unimodular polynomials Pn ∈ Kn i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2021
ISSN: ['2330-0000']
DOI: https://doi.org/10.1090/tran/8313